skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aldred, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing severity and frequency of wildfires in forested watersheds pose significant challenges to water quality management. This study examines the impacts of the 2022 Hermit's Peak-Calf Canyon gigafire, the largest wildfire in New Mexico's history. The wildfire burned over 1,382 km2, affecting a key watershed that supplies drinking water to Las Vegas, NM. We conducted a longitudinal assessment of post-fire water quality dynamics across a 170 km fluvial network, analyzing flow, water quality parameters, nutrient and metal concentrations, and mobilization patterns. We found that post-fire nutrient concentrations exceeded pre-fire medians by up to two orders of magnitude. Our analyses revealed solute-specific transport patterns that are difficult to predict with static watershed- or fire-specific characteristics (e.g., burned area and percent severities). NH 4 + , PO 3 - , and NO 2 - were closely and positively associated with discharge and turbidity near the burn perimeter, while NO 3 - and TON exhibited strong mobilization trends ~170 km downstream. In contrast to nutrients, calcium, magnesium, and manganese levels showed no significant pre- vs. post-fire shifts, while concentrations of trace metals like Cr3+, Pb2+, Zn2+, and Sr2+surpassed background levels and public health thresholds. Our findings emphasize the significant propagation of wildfire disturbances over hundreds of kilometers and suggest the need for integrated watershed management strategies, including the management of large-scale flood control mechanisms to mitigate the far-reaching impacts of water quality disturbances post-fire. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026
  2. Abstract. Rock fractures are a key contributor to a broad array of Earth surface processes due to their direct control on rock strength as well as rock porosity and permeability. However, to date, there has been no standardization for the quantification of rock fractures in surface process research. In this work, the case is made for standardization within fracture-focused research, and prior work is reviewed to identify various key datasets and methodologies. Then, a suite of standardized methods is presented as a starting “baseline” for fracture-based research in surface process studies. These methods have been shown in pre-existing work from structural geology, geotechnical engineering, and surface process disciplines to comprise best practices for the characterization of fractures in clasts and outcrops. This practical, accessible, and detailed guide can be readily employed across all fracture-focused weathering and geomorphology applications. The wide adoption of a baseline of data collected using the same methods will enable comparison and compilation of datasets among studies globally and will ultimately lead to a better understanding of the links and feedbacks between rock fracture and landscape evolution. 
    more » « less